Loading...
 
Mediterr J Rheumatol 2017;28(4):174-82
Dkk1: A key molecule in joint remodelling and fibrosis
Authors Information
Department of Rheumatology, University of Patras Medical School, Patras University Hospital, Patras, Greece
References
  1. Logan C Y, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781-810.
  2. Cheon S S, Cheah A YL, Turley S, Nadesan P, Poon R, Clevers H, et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A 2002;99:6973-8.
  3. Dell’Accio F, De Bari C, El Tawil N M F, Barone F, Mitsiadis T A, O’Dowd J, et al. Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 2006;8:R139.
  4. Wei J, Melichian D, Komura K, Hinchcliff M, Lam A P, Lafyatis R, et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma? Arthritis Rheum 2011;63:1707-17.
  5. Lories R J, Corr M, Lane N E. To Wnt or not to Wnt: the bone and joint health dilemma. Nat Rev Rheumatol 2013;9:328-39.
  6. Boyden L M, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick M A, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513-21.
  7. Gong Y, Slee R B, Fukai N, Rawadi G, Roman-Roman S, Reginato A M, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513–23.
  8. Tejpar S, Nollet F, Li C, Wunder J S, Michils G, dal Cin P, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 1999;18:6615-20.
  9. Pinzone J J, Hall B M, Thudi N K, Vonau M, Qiang Y-W, Rosol T J, et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009;113:517-25.
  10. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012;3:735.
  11. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky M S, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007;13:156-63.
  12. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler B M, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/[beta]-catenin signalling. Nature 2002;417:664-7.
  13. Walsh N C, Reinwald S, Manning C A, Condon K W, Iwata K, Burr D B, et al. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 2009;24:1572-85.
  14. Uderhardt S, Diarra D, Katzenbeisser J, David J-P, Zwerina J, Richards W, et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis 2010;69:592-7.
  15. Daoussis D, Liossis S N C, Solomou E E, Tsanaktsi A, Bounia K, Karampetsou M, et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 2010;62:150-8.
  16. Taylan A, Sari I, Akinci B, Bilge S, Kozaci D, Akar S, et al. Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskeletal Disorders 2012;13:191.
  17. Kwon S R, Lim M J, Suh C H, Park S G, Hong Y S, Yoon B Y, et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int 2012;32:2523-7.
  18. Zhang L, Ouyang H, Xie Z, Liang Z-H, Wu X-W. Serum DKK-1 level in the development of ankylosing spondylitis and rheumatic arthritis: a meta-analysis. Exp Mol Med 2016;48:e228.
  19. Nocturne G, Pavy S, Boudaoud S, Seror R, Goupille P, Chanson P, et al. Increase in Dickkopf-1 Serum Level in Recent Spondyloarthritis. Data from the DESIR Cohort. PLoS One 2015;10:e0134974.
  20. Heiland G R, Appel H, Poddubnyy D, Zwerina J, Hueber A, Haibel H, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71:572-4.
  21. Yucong Z, Lu L, Shengfa L, Yongliang Y, Ruguo S, Yikai L. Serum functional dickkopf-1 levels are inversely correlated with radiographic severity of ankylosing spondylitis. Clin Lab 2014;60:1527-31.
  22. Garnero P, Tabassi NC-B, Voorzanger-Rousselot N. Circulating dickkopf-1 and radiological progression in patients with early rheumatoid arthritis treated with etanercept. J Rheumatol 2008;35:2313-5.
  23. Wang S-Y, Liu Y-Y, Ye H, Guo J-P, Li R, Liu X, et al. Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 2011;38:821-7.
  24. Seror R, Boudaoud S, Pavy S, Nocturne G, Schaeverbeke T, Saraux A, et al. Increased Dickkopf-1 in Recent-onset Rheumatoid Arthritis is a New Biomarker of Structural Severity. Data from the ESPOIR Cohort. Sci Rep 2016;6:18421.
  25. Pap T, Müller-Ladner U, Gay R E, Gay S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res 2000;2:361–7.
  26. Juarez M, McGettrick H M, Scheel-Toellner D, Yeo L, Spengler J, de Paz B, et al. DKK1 expression by synovial fibroblasts in very early rheumatoid arthritis associates with lymphocyte adhesion in an in vitro flow co-culture system. Arthritis Res Ther 2016;18:14.
  27. de Rooy D P C, Yeremenko N G, Wilson A G, Knevel R, Lindqvist E, Saxne T, et al. Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann Rheum Dis 2013;72:769-75.
  28. Yeremenko N, Zwerina K, Rigter G, Pots D, Fonseca J E, Zwerina J, et al. Brief Report: Tumor Necrosis Factor and Interleukin-6 Differentially Regulate Dkk-1 in the Inflamed Arthritic Joint. Arthritis Rheumatol 2015;67:2071-5.
  29. Bayle J, Fitch J, Jacobsen K, Kumar R, Lafyatis R, Lemaire R. Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J Invest Dermatol 2008;128:871-81.
  30. Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis 2012;71:761-7.
  31. Königshoff M, Balsara N, Pfaff E-M, Kramer M, Chrobak I, Seeger W, et al. Functional Wnt Signaling Is Increased in Idiopathic Pulmonary Fibrosis. Schmidt H H H W, editor. PLoS One 2008;3:e2142.
  32. Königshoff M, Kramer M, Balsara N, Wilhelm J, Amarie O V, Jahn A, et al. WNT1-inducible signaling protein – 1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 2009;119:772-87.
  33. Tan RJ, Zhou D, Zhou L, Liu Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 2014;4:84-90.
  34. Miao C, Yang Y, He X, Huang C, Huang Y, Zhang L, et al. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie 2013;95:2326-35.
  35. He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, et al. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fi brosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 2010;107:21110-5.
  36. Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003;162:1495-502.
  37. Selman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis: Aberrant recapitulation of developmental programs? PLoS Med 2008;5:0373-80.
  38. Königshoff M, Eickelberg O. WNT signaling in lung disease: a failure or a regeneration signal? Am J Respir Cell Mol Biol 2010;42:21-31.
  39. Pfaff E-M, Becker S, Günther A, Königshoff M. Dickkopf proteins influence lung epithelial cell proliferation in idiopathic pulmonary fibrosis. Eur Respir J 2011;37:79-87.
  40. Sun Z, Wang C, Shi C, Sun F, Xu X, Qian W, et al. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis. Int J Mol Med. 2014;33:1097-109.
  41. Tan R J, Zhou D, Zhou L, Liu Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 2014;4:84-90.
  42. He W, Dai C, Li Y, Zeng G, Monga S P, Liu Y. Wnt/β-Catenin Signaling Promotes Renal Interstitial Fibrosis. J Am Soc Nephrol 2009;20:765-76.
  43. Surendran K. Wnt-Dependent -Catenin Signaling Is Activated after Unilateral Ureteral Obstruction, and Recombinant Secreted Frizzled-Related Protein 4 Alters the Progression of Renal Fibrosis. J Am Soc Nephrol 2005;16:2373-84.
  44. Ren S, Johnson B G, Kida Y, Ip C, Davidson K C, Lin S-L, et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci U S A 2013;110:1440-5.
  45. Ho C, Lee P-H, Hsu Y-C, Huang Y-T, Wang F-S, Lin C-L. Sustained Wnt/β-Catenin Signaling Rescues High Glucose Induction of Transforming Growth Factor-β1-Mediated Renal Fibrosis. Am J Med Sci 2012;344:374–82.
  46. Myung S J, Yoon J-H, Gwak G-Y, Kim W, Lee J-H, Kim K M, et al. Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Lett 2007;581:2954-8.
  47. Cheng J H, She H, Han Y-P, Wang J, Xiong S, Asahina K, et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol - Gastrointest Liver Physiol 2008;294:G39-49.
  48. Tsukamoto H, Zhu N-L, Asahina K, Mann D A, Mann J. Epigenetic cell fate regulation of hepatic stellate cells. Hepatol Res 2011;41:675–82.
  49. Shimizu K. Pancreatic stellate cells: Molecular mechanism of pancreatic fibrosis. J Gastroenterol Hepatol. 2008;23:S119–21.
  50. Hu Y, Wan R, Yu G, Shen J, Ni J, Yin G, et al. Imbalance of Wnt/Dkk negative feedback promotes persistent activation of pancreatic stellate cells in chronic pancreatitis. PLoS One. 2014;9:1-13.
  51. Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol 2007;13:3056-62.
  52. Dees C, Schlottmann I, Funke R, Distler A, Palumbo-Zerr K, Zerr P, et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann Rheum Dis 2014;73:1232-9.
  53. Daoussis D, Liossis S N C. B cells tell scleroderma fibroblasts to produce collagen. Arthritis Res Ther 2013;15:125.
  54. Sakkas L I, Bogdanos D P. Systemic sclerosis: New evidence re-enforces the role of B cells. Autoimmun Rev 2016;15:155-61.
  55. Hasegawa M, Hamaguchi Y, Yanaba K, Bouaziz J-D, Uchida J, Fujimoto M, et al. B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis. Am J Pathol 2006;169:954-66.
  56. Sato S, Fujimoto M, Hasegawa M, Takehara K, Tedder T F. Altered B lymphocyte function induces systemic autoimmunity in systemic sclerosis. Mol Immunol 2004;41:1123-33.
  57. Komura K, Yanaba K, Horikawa M, Ogawa F, Fujimoto M, Tedder T F, et al. CD19 regulates the development of bleomycin-induced pulmonary fibrosis in a mouse model. Arthritis Rheum 2008;58:3574-84.
  58. Daoussis D, Tsamandas A C, Liossis S N C, Antonopoulos I, Karatza E, Yiannopoulos G, et al. B-cell depletion therapy in patients with diffuse systemic sclerosis associates with a significant decrease in PDGFR expression and activation in spindle-like cells in the skin. Arthritis Res Ther 2012;14:R145.
  59. Smith V, Van Praet J T, Vandooren B, Van der Cruyssen B, Naeyaert J-M, Decuman S, et al. Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann Rheum Dis 2010;69:193-7.
  60. Jordan S, Distler J H W, Maurer B, Huscher D, van Laar J M, Allanore Y, et al. Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis 2015;74:1188-94.
  61. Daoussis D, Liossis S N C, Tsamandas A C, Kalogeropoulou C, Kazantzi A, Sirinian C, et al. Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 2010;49:271-80.
  62. Daoussis D, Liossis S N C, Tsamandas A C, Kalogeropoulou C, Kazantzi A, Korfiatis P, et al. Is there a role for B-cell depletion as therapy for scleroderma? A case report and review of the literature. Semin Arthritis Rheum 2010;40:127-36.
  63. Daoussis D, Liossis S N C, Yiannopoulos G, Andonopoulos A P. B-cell depletion therapy in systemic sclerosis: experimental rationale and update on clinical evidence. Int J Rheumatol 2011;2011:214013.
  64. Daoussis D, Liossis S N C, Tsamandas A C, Kalogeropoulou C, Paliogianni F, Sirinian C, et al. Effect of long-term treatment with rituximab on pulmonary function and skin fibrosis in patients with diffuse systemic sclerosis. Clin Exp Rheumatol 2012;30:S17-22.
  65. Daoussis D, Antonopoulos I, Liossis S N C, Yiannopoulos G, Andonopoulos A P. Treatment of systemic sclerosis-associated calcinosis: a case report of rituximab-induced regression of CREST-related calcinosis and review of the literature. Semin Arthritis Rheum 2012;41:822-9.
  66. Daoussis D, Melissaropoulos K, Sakellaropoulos G, Antonopoulos I, Markatseli T E, Simopoulou T, et al. A multicenter, open-label, comparative study of B-cell depletion therapy with Rituximab for systemic sclerosis-associated interstitial lung disease. Semin Arthritis Rheum 2016 Oct 13. pii: S0049-0172(16)30344-4. https://doi.org/10.1016/j.semarthrit.2016.10.003. [Epub ahead of print]
  67. McQueen F M, Solanki K. Rituximab in diffuse cutaneous systemic sclerosis: should we be using it today? Rheumatology (Oxford) 2015;54:757-67.
  68. Daoussis D, Tsamandas A, Antonopoulos I, Filippopoulou A, Papachristou D J, Papachristou N I, et al. B cell depletion therapy upregulates Dkk-1 skin expression in patients with systemic sclerosis: association with enhanced resolution of skin fibrosis. Arthritis Res Ther 2016;18:118.
  69. Li X, Grisanti M, Fan W, Asuncion F J, Tan H L, Dwyer D, et al. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 2011;26:2610–21.
  70. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov 2014;13:513-32.
  71. Genant H K, Engelke K, Bolognese M A, Mautalen C, Brown J P, Recknor C, et al. Effects of Romosozumab Compared With Teriparatide on Bone Density and Mass at the Spine and Hip in Postmenopausal Women With Low Bone Mass. J Bone Miner Res 2016;32:181-7. https://doi.org/10.1002/jbmr.2932.
  72. Iyer S P, Beck J T, Stewart A K, Shah J, Kelly K R, Isaacs R, et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol 2014;167:366-75.
  73. Makras P, Delaroudis S, Anastasilakis A D. Novel therapies for osteoporosis. Metab - Clin Exp 2016;64:1199-214.
  74. Sakellariou G T, Iliopoulos A, Konsta M, Kenanidis E, Potoupnis M, Tsiridis E, et al. Serum levels of Dkk-1, sclerostin and VEGF in patients with ankylosing spondylitis and their association with smoking, and clinical, inflammatory and radiographic parameters. Jt Bone Spine 2016;Jun 28. pii: S1297-319X(16)30097-5. https://doi.org/10.1016/j.jbspin.2016.05.008. [Epub ahead of print]