Mediterr J Rheumatol 2022;33(2):176-84
TGF-β1/Smad Signalling in Proliferative Glomerulonephritis Associated with Autoimmune Diseases
Authors Information

1Nephrology Department, Hippokration General Hospital, Athens, Greece

21st Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece

32nd Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Athens, Attikon University Hospital, Athens, Greece

42nd Department of Medicine and Laboratory, Clinical Immunology - Rheumatology Unit, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece

  1. Sethi S, Haas M, Markowitz GS, D’Agati VD, Rennke HG, Jennette JC, et al. Mayo Clinic/Renal Pathology Society Consensus Report on Pathologic Classification, Diagnosis, and Reporting of GN. J Am Soc Nephrol 2016;27(5):1278-87.
  2. Tampe, B., Zeisberg, M. Evidence for the involvement of epigenetics in the progression of renal fibrogenesis. Nephrol Dial Transplant 2014;29(Suppl. 1):i1–i8.
  3. Nikolic-Paterson DJ, Wang S, Lan HY. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl 2014; Nov;4(1):34-8.
  4. Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI, et al. Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int 1996; Feb;49(2):461-9.
  5. Ito Y, Goldschmeding R, Kasuga H, Claessen N, Nakayama M, Yuzawa Y, et al. Expression patterns of connective tissue growth factor and of TGF-β isoforms during glomerular injury recapitulate glomerulogenesis. Am J Physiol Renal Physiol 2010 Sep;299(3):F545-58.
  6. Jennette JC, Falk RJ. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol 2014;10:463-73.
  7. Jennette JC, Xiao H, Falk R, Gasim AM. Experimental models of vasculitis and glomerulonephritis induced by antineutrophil cytoplasmic autoantibodies. Contrib Nephrol 2011;169:211-20.
  8. Savage CO, Gaskin G, Pusey CD, Pearson JD. Myeloperoxidase binds to vascular endothelial cells, is recognized by ANCA and can enhance complement dependent cytotoxicity. Adv Exp Med Biol 1993;336:121-3.
  9. Flint SM, McKinney EF, Smith KG. Emerging concepts in the pathogenesis of antineutrophil cytoplasmic antibody-associated vasculitis. Curr Opin Rheumatol 2015;27(2):197-203.
  10. Becker-Merok A, Eilertsen GØ, Nossent JC. Levels of transforming growth factor-beta are low in systemic lupus erythematosus patients with active disease. J Rheumatol 2010;37:2039-45.
  11. Yang CW, Hsueh S, Wu MS, Lai PC, Huang JY, Wu CH, et al. Glomerular transforming growth factor-beta1 mRNA as a marker of glomerulosclerosis-application in renal biopsies. Nephron 1997;77:290-7.
  12. Lewis MJ, McAndrew MB, Wheeler C, Workman N, Agashe P, Koopmann J, et al. Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus. J Autoimmun 2018 Jul;91:1-12.
  13. Sisto M, Ribatti D, Lisi S. SMADS-Mediate Molecular Mechanisms in Sjögren’s Syndrome. Int J Mol Sci 2021; 22(6):3203.
  14. Zhu D, Zhao J, Lou A, Huang Q, Yang Q, Zhu J, et al. Transforming growth factor _1 promotes fibroblast-like synoviocytes migration and invasion via TGF-_1/Smad signalling in rheumatoid arthritis. Mol Cell Biochem 2019;459:141-50.
  15. Long Y, Chen W, Du Q, Zuo X, Zhu H. Ubiquitination in Scleroderma Fibrosis and Its Treatment. Front Immunol 2018 Oct 17;9:2383.
  16. Dennler S, Goumans MJ, ten Dijke P. Transforming growth factor beta signal transduction. J Leukoc Biol 2002;71:731-40.
  17. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133-46.
  18. Shi Y, Massagué J. Mechanisms of TGF-beta signalling from cell membrane to the nucleus. Cell 2003;113:685-700.
  19. Romeo DS, Park K, Roberts AB, Sporn MB, Kim SJ. An element of the transforming growth factor-beta 1 5’-untranslated region represses translation and specifically binds a cytosolic factor. Mol Endocrinol 1993;7:759-66.
  20. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis, Nat Rev Nephrol 2016;12:325-38.
  21. Budi EH, Duan D, Derynck R. Transforming growth factor-β receptors and Smads: regulatory complexity and functional versatility. Trends Cell Biol 2017;27:658-72.
  22. Macias MJ, Martin-Malpartida P, Massague J. Structural determinants of Smad function in TGF-β signalling. Trends Biochem Sci 2015;40:296-308.
  23. Lucarelli P, Schilling M, Kreutz C, Vlasov A, Boehm ME, Iwamoto N, et al. Resolving the combinatorial complexity of Smad protein complex formation and its link to gene expression, Cell Syst 2017;6:75-89.
  24. Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 2011;60:280-7.
  25. Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 2010;21:1317-25.
  26. Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse Role of TGF-β in Kidney Disease. Front Cell Dev Biol  2020;8:123.
  27. Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993 Jul;122(1):103-11.
  28. Chung AC, Zhang H, Kong YZ, Tan JJ, Huang XR, Kopp JB, et al. Advanced glycation end-products induce tubular CTGF via TGF-β-independent Smad3 signalling. J Am Soc Nephrol 2010;21:249-26.
  29. Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, et al. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 2011;60: 590-601.
  30. Al-Rasheed NM, Al-Rasheed NM, Al-Amin MA, Hasan IH, Al-Ajmi HN, Mohammad RA, et al. Fenofibrate attenuates diabetic nephropathy in experimental diabetic rat’s model via suppression of augmented TGF-β1/Smad3 signalling pathway, Arch Physiol Biochem 2016;122:186-94.
  31. Zhou B, Mu J, Gong Y, Lu C, Zhao Y, He T, et al. Brd4 inhibition attenuates unilateral ureteral obstruction-induced fibrosis by blocking TGF-β-mediated Nox4 expression. Redox Biol 2017;11:390-402.
  32. Wang W, Koka V, Lan HY. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton) 2005;10:48-56.
  33. Liu Z, Huang XR, Chen HY, Fung E, Liu J, Lan HY. Deletion of angiotensin- converting enzyme-2 promotes hypertensive nephropathy by targeting Smad7 for ubiquitin degradation. Hypertension 2017;70:822-30.
  34. Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Böttinger EP, et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 1996 Jun;74(6):991-1003.
  35. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signalling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003 Nov;112(10):1486-94.
  36. Letterio JJ, Roberts AB. Transforming growth factor-beta1- deficient mice: Identification of isoform-specific activities in vivo. J Leukoc Biol 1996;59:769-74.
  37. Huang ΧR, Chung ACK, Zhou L, Wang XJ, Lan HY. Latent TGF-β1 Protects Against Crescentic Glomerulonephritis. J Am Soc Nephrol 2008;19:233-42.
  38. Qiao X, Rao P, Zhang Y, Liu L, Pang M, Wang H, et al. Redirecting TGF-β Signalling through the β-Catenin/Foxo Complex Prevents Kidney Fibrosis. J Am Soc Nephrol 2018 Feb;29(2):557-70.
  39. Kitching AR, Holdsworth SR. The emergence of TH17 cells as effectors of renal injury. J Am Soc Nephrol 2011;22(2):235.
  40. Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis 2016 Dec 1;7(12):e2495.
  41. Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J, Savage CO, et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int 2008 Aug;74(4):495-504.
  42. Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 2016 Aug 9;7(32):52294-306.
  43. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011;11(11):723-37.
  44. Nangaku M, Shankland SJ, Couser WG. Cellular response to injury in membranous nephropathy. J Am Soc Nephrol 2005;16(5):1195.
  45. López-Hernández FJ, López-Novoa JM. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 2012;347:141-54.
  46. Wolf G, Ziyadeh FN. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol 2007;106:p26-p31.
  47. Schiffer M, Bitzer M, Roberts IS, Kopp JB, Dijke P, Mundel P, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 2001;108:807-16.
  48. Li Y, Kang YS, Dai C, Kiss LP, Wen X, Liu Y. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol 2008;171:299-308.
  49. Ghayur A, Padwal MK, Liu L, Zhang J, Margetts PJ. SMAD3-dependent and -independent pathways in glomerular injury associated with experimental glomerulonephritis. Am J Physiol Renal Physiol 2019;317:152-62.
  50. Böttinger EP, Bitzer M. TGF-beta signalling in renal disease. J Am Soc Nephrol 2002;13:2600-10.
  51. Yin S, Zhang Q, Yang J, Lin W, Li Y, Chen F, et al.  TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis. Biochim Biophys Acta Mol Cell Res 2017 Jul;1864(7):1207-16.
  52. Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation. Curr Pathobiol Rep 2013 Dec;1(4):10.1007/s40139-013-0026-7.
  53. Chalkia A, Gakiopoulou H, Theohari I, Foukas PG, Vassilopoulos D, Petras D. Transforming Growth Factor-β1/Smad Signalling in Glomerulonephritis and Its Association with Progression to Chronic Kidney Disease. Am J Nephrol 2021 Sep 8:1-13. doi: 10.1159/000517619. Epub ahead of print.
  54. Y. Shi, Massague J. Mechanisms of TGF-β signalling from cell membrane to the nucleus. Cell 2003;113:685-700.
  55. K. Sharma. Obesity, oxidative stress, and fibrosis in chronic kidney disease, Kidney Int 2014;4:113-7.
  56. Kitamura M, Sütö TS. TGF-beta and glomerulonephritis: anti-inflammatory versus prosclerotic actions. Nephrol Dial Transplant 1997;12:669-79.
  57. Goumenos DS, Tsakas S, El Nahas AM, Alexandri S, Oldroyd S, Kalliakmani P, et al. Transforming growth factor- beta (1) in the kidney and urine of patients with glomerular disease and proteinuria. Nephrol Dial Transplant 2002;17:2145-52.
  58. Shimizu M, Kondo S, Urushihara M, Takamatsu M, Kanemoto K, Nagata M, et al. Role of integrin-linked kinase in epithelial mesenchymal transition in crescent formation of experimental glomerulonephritis. Nephrol Dial Transplant 2006;21:2380-90.
  59. Ito Y, Goldschmeding R, Kasuga H, Claessen N, Nakayama M, Yuzawa Y, et al. Expression patterns of connective tissue growth factor and of TGF-beta isoforms during glomerular injury recapitulate glomerulogenesis. Am J Physiol Renal Physiol 2010 Sep;299(3):F545-58.
  60. Yoshioka K, Takemura T, Murakami K, Okada M, Hino S, Miyamoto H, et al. Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys. Lab Invest 1993; 68:154-63.
  61. Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA, et al. Smad7 Gene Therapy Ameliorates an Autoimmune Crescentic Glomerulonephritis in Mice. J Am Soc Nephrol 2007;18(6):1777-88.
  62. Zhou H, Hasni SA, Perez P, Tandon M, Jang SI, Zheng C, et al. MiR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol 2013;24:1073-87.
  63. Qi H, Cao Q, Liu Q. MicroRNA-183 exerts a protective role in lupus nephritis through blunting the activation of TGF-β/Smad/TLR3 pathway via reducing Tgfbr1. Exp Cell Res 2020;394:112-38.
  64. Du Y, Xie C, Ravikumar S, Orme J, Li L, Zhou XJ, et al. Heightened Crescentic Glomerulonephritis in Immune Challenged 129sv Mice Is TGF-β/Smad3 Dependent. Int J Mol Sci 2021; 22(4):2059.
  65. Koutroutsos K, Kassimatis TI, Nomikos A, Giannopoulou I, Theohari I, Nakopoulou L. Effect of Smad pathway activation on podocyte cell cycle regulation: an immunohistochemical evaluation. Ren Fail 2014 Sep;36(8):1310-6.