Loading...
 

Volume 35, Issue 1, March 2024



Sign in to download the Issue in PDF format.

Mediterr J Rheumatol 2021;32(2):112-7
A Novel Hypothetical Approach to Explain the Mechanisms of Pathogenicity of Rheumatic Arthritis
Authors Information

Institute for Dental Sciences, the Hebrew University – Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel

References
  1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. New Engl J Med 2011;365(23):2205-19.
  2. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012;51Suppl 5:v3-11.
  3. Calabresi E, Petrelli F, Bonifacio A, Puxeddu I, Alunno A. One year in review 2018: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 2018;36(2):175-84.
  4. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA 2018;320(13):1360-72.
  5. Mayadas TN, Tsokos GC, Tsuboi N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation 2009;120(20):2012-24.
  6. Firestein GS. Pathogenesis of rheumatoid arthritis: the intersection of genetics and epigenetics. Trans Am Clin Climatol Assoc 2018;129:171.
  7. Derksen V, Huizinga T, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol 2017;39(4):437-46.
  8. Low J, Moore T. A role for the complement system in rheumatoid arthritis. Curr Pharm Des 2005;11(5):655-70.
  9. Monach PA, Hueber W, Kessler B, Tomooka BH, BenBarak M, Simmons BP, et al. A broad screen for targets of immune complexes decorating arthritic joints highlights deposition of nucleosomes in rheumatoid arthritis. Proc Natl Acad Sci USA 2009;106(37):15867-72.
  10. Steiner G, Smolen J. Autoantibodies in rheumatoid arthritis and their clinical significance. Arthritis Res Ther 2002;4(2):S1.
  11. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008;118(11):3537-45.
  12. Brzustewicz E, Bryl E. The role of cytokines in the pathogenesis of rheumatoid arthritis—practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine 2015;76(2):527-36.
  13. Cecchi I, de la Rosa IA, Menegatti E, Roccatello D, Collantes-Estevez E, Lopez-Pedrera C, et al. Neutrophils: novel key players in rheumatoid arthritis. Current and future therapeutic targets. Autoimmun Rev 2018;17(11):1138-49.
  14. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996;14(1):397-440.
  15. Kaplan MJ. Role of neutrophils in systemic autoimmune diseases. Arthritis Res Ther 2013;15(5):219.
  16. Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 2014;10(10):593.
  17. Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: Is immunity the second function of chromatin? J Cell Biol 2012;198(5):773-83.
  18. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol 2016;7:302.
  19. Ginsburg I. Cationic polyelectrolytes: a new look at their possible roles as opsonins, as stimulators of respiratory burst in leukocytes, in bacteriolysis, and as modulators of immune-complex diseases (a review hypothesis). Inflammation 1987;11(4):489-515.
  20. Ginsburg I, Sela MN, Morag A, Ravid Z, Duchan Z, Ferne M, et al. Role of leukocyte factors and cationic polyelectrolytes in phagocytosis of group a streptococci and Candida albicans by neutrophils, macrophages, fibroblasts and epithelial cells. Inflammation 1981;5(4):289-312.
  21. Hubner G, Voigt W, Schlumberger H, Ginsburg I. Poly-L-arginine 'opsonizes' nuclei for phagocytosis by mouse fibroblasts. IRCS Med Sci 1985;13(10):934-5.
  22. Weiler JM, Edens RE, Linhardt R, Kapelanski D. Heparin and modified heparin inhibit complement activation in vivo. J Immunol 1992;148(10):3210-5.
  23. Ginsburg I, Kohen R. Invited review: Cell damage in inflammatory and infectious sites might involve a coordinated “cross-talk” among oxidants, microbial haemolysins and ampiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (an overview). Free Radic Res 1995;22(6):489-517.
  24. Ginsburg I. Could synergistic interactions among reactive oxygen species, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions? Med Hypotheses 1998;51(4):337-46.
  25. Varani J, Ginsburg I, Schuger L, Gibbs D, Bromberg J, Johnson K, et al. Endothelial cell killing by neutrophils. Synergistic interaction of oxygen products and proteases. Am J Pathol 1989;135(3):435.
  26. Ginsburg I, Kohen R. Synergistic effects among oxidants, membrane-damaging agents, fatty acids, proteinases, and xenobiotics: killing of epithelial cells and release of arachidonic acid. Inflammation 1995;19(1):101-18.
  27. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013;13(3):159-75.
  28. Baird BR, Cheronis JC, Sandhaus RA, Berger EM, White CW, Repine JE. O2 metabolites and neutrophil elastase synergistically cause edematous injury in isolated rat lungs. J Appl Physiol 1986;61(6):2224-9.
  29. Henson P, Johnston R. Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J Clin Invest 1987;79(3):669-74.
  30. Rodell T, Cheronis J, Repine J. Endothelial cell xanthine oxidase-derived toxic oxygen metabolites contribute to acute lung injury from neutrophil elastase. Chest 1988;93(3):146S.
  31. Lichtenstein AK, Ganz T, Selsted ME, Lehrer RI. Synergistic cytolysis mediated by hydrogen peroxide combined with peptide defensins. Cell Immunol 1988;114(1):104-16.
  32. Ginsburg I, Gibbs DF, Schuger L, Johnson KJ, Ryan US, Ward PA, et al. Vascular endothelial cell killing by combinations of membrane-active agents and hydrogen peroxide. Free Radic Biol Med 1989;7(4):369-76.
  33. Ginsburg I, Misgav R, Pinson A, Varani J, Ward P, Kohen R. Synergism among oxidants, proteinases, phospholipases, microbial hemolysins, cationic proteins, and cytokines. Inflammation 1992;16(5):519-38.
  34. Ginsburg I, Mitra RS, Gibbs DF, Varani J, Kohen R. Killing of endothelial cells and release of arachidonic acid. Inflammation. 1993;17(3):295-319.
  35. Lehr H, Arfors K. Mechanisms of tissue damage by leukocytes. Curr Opin Hematol 1994;1(1):92-9.
  36. Dallegri F, Ottonello L. Tissue injury in neutrophilic inflammation. Inflamm Res 1997;46(10):382-91.
  37. Ginsburg I, Korem M, Koren E, Varani J. Pro-inflammatory agents released by pathogens, dying host cells, and neutrophils act synergistically to destroy host tissues: a working hypothesis. J Inflamm Res 2019;12:35.
  38. Ginsburg I, Ward PA, Varani J. Can we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae? FEMS Immunol Med Microbiol 1999;25(4):325-38.
  39. Ginsburg I, Koren E. Bacteriolysis – a mere laboratory curiosity? Crit Rev Microbiol 2018;44(5):609-18.
  40. Wecke J, Lahav M, Ginsburg I, Giesbrecht P. Cell wall degradation of Staphylococcus aureus by lysozyme. Arch Microbiol 1982;131(2):116-23.
  41. Schwab JH, Cromartie WJ, Ohanian SH, Craddock JG. Association of experimental chronic arthritis with the persistence of group A streptococcal cell walls in the articular tissue. J Bacteriol 1967;94(5):1728-35.
  42. Ginsburg I. Can chronic and self-perpetuating arthritis in the human be caused by arthrotropic undegraded microbial cell wall constituants? A working hypothesis. Rheumatol Rehab 1977;16(3):141-9.
  43. Crofford L, Wilder R. Streptococcal cell wall antigens and rheumatoid arthritis. In: Smolen JS, Kalden JR, Maini RN, editors. Rheumatoid arthritis – recent research advances. Berlin: Springer; 1992. p. 202-15.
  44. Ginsburg I, Zor U, Floman Y. Experimental models of streptococcal arthritis: pathogenetic role of streptococcal products and prostaglandins and their modification by anti-inflammatory agents. Exp Models Chron Inflamm Dis 1977;6:256-99.
  45. Favalli EG, Desiati F, Atzeni F, Sarzi-Puttini P, Caporali R, Pallavicini FB, et al. Serious infections during anti-TNFα treatment in rheumatoid arthritis patients. Autoimmun Rev 2009;8(3):266-73.
  46. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002;2(5):364-71.
  47. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford, UK: Oxford University Press; 2015.
  48. Gutteridge JM, Halliwell B. Mini-review: Oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 2018;502(2):183-6.
  49. Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P, et al. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antiox Redox Signal 2007;9(10):1541-68.
  50. Abbas M, Monireh M. The role of reactive oxygen species in immunopathogenesis of rheumatoid arthritis. Iran J Allergy Asthma Immunol 2008;7(4):195-202.
  51. Quiñonez-Flores CM, González-Chávez SA, Del Río Nájera D, Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. BioMed Res Int 2016;2016:6097417.
  52. Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther 2004;6(6):265.
  53. Taraza C, Mohora M, Vârgolici B, Dinu V. Importance of reactive oxygen species in rheumatoid arthritis. Rom J Intern Med 1997;35(1-4):89-98.
  54. Yoo S-J, Go E, Kim Y-E, Lee S, Kwon J. Roles of reactive oxygen species in rheumatoid arthritis pathogenesis. J Rheum Dis 2016;23(6):340-7.
  55. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS One 2016 Apr 4;11(4):e0152925.
  56. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 1998;30(2):225-43.
  57. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 2007;74(4):324-9.
  58. Yoo S-J, Kang S, Kim J, Yoo I, Park C. THU0093 NADPH oxidases associated production of reactive oxygen species in rheumatoid arthritis. Ann Rheum Dis 2018;77:268.
  59. Nagy G, Koncz A, Telarico T, Fernandez D, Érsek B, Buzás E, et al. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and sysemic lupus erythematosus. Arthritis Res Ther 2010;12(3):210.
  60. Weinberg JB, Granger DL, Pisetsky DS, Seldin MF, Misukonis MA, Mason SN, et al. The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med 1994;179(2):651-60.
  61. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie Q, Nathan CF, et al. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 1993;178(2):749-54.
  62. Bauerova K, Bezek S. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen Physiol Biophys 2000;18:15-20.
  63. Rengel Y, Ospelt C, Gay S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res Ther 2007;9(5):221.
  64. Momohara S, Kashiwazaki S, Inoue K, Saito S, Nakagawa T. Elastase from polymorphonuclear leukocyte in articular cartilage and synovial fluids of patients with rheumatoid arthritis. Clin Rheumatol 1997;16(2):133-9.
  65. Oikonomopoulou K, Diamandis EP, Hollenberg MD, Chandran V. Proteinases and their receptors in inflammatory arthritis: an overview. Nat Rev Rheumatol 2018;14(3):170.
  66. Li X, Ma X. The role of heparin in sepsis: much more than just an anticoagulant. Br J Haematol 2017;179(3):389-98.
  67. Wildhagen K, Garcıa de Frutos P, Reutelingsperger C, Schrijver R. Arest é C, Ortega-Gomez A, et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 2014;123:1098-101.
  68. Van Bruggen MC, Walgreen B, Rijke TP, Corsius MJ, Assmann KJ, Smeenk RJ, et al. Heparin and heparinoids prevent the binding of immune complexes containing nucleosomal antigens to the GBM and delay nephritis in MRL/lpr mice. Kidney Int 1996;50(5):1555-64.
  69. Warren J, Ward P, Johnson K, Ginsburg I. Modulation of acute immune complex-mediated tissue injury by the presence of polyionic substances. Am J Pathol 1987;128(1):67.
  70. Qi L, Zhang X, Wang X. Heparin inhibits the inflammation and proliferation of human rheumatoid arthritis fibroblast‑like synoviocytes through the NF‑κB pathway. Mol Med Rep 2016;14(4):3743-8.
  71. So A, Varisco PA, Kemkes‐Matthes B, Herkenne‐Morard C, Chobaz‐Peclat V, Gerster JC, et al. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 2003;1(12):2510-5.
  72. Carmassi F, De Negri F, Morale M, Puccetti R, Song K, Chung S. Assessment of coagulation and fibrinolysis in synovial fluid of rheumatoid arthritis patients. Fibrinolysis 1994;8(3):162-71.
  73. Busso N, Hamilton JA. Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis. Arthritis Rheum 2002;46(9):2268-79.
  74. Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost 2005;93(4):647-54.
  75. Belch J, McArdle B, Madhok R, McLaughlin K, Capell H, Forbes C, et al. Decreased plasma fibrinolysis in patients with rheumatoid arthritis. Ann Rheum Dis 1984;43(6):774-7.
  76. Senior RM, Skogen WF, Griffin GL, Wilner GD. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J Clin Invest 1986;77(3):1014-9.
  77. Ginsburg I, De Vries A, Katchalski E. The action of some water-soluble poly-α-amino acids on fibrinolysis. Science 1952;116(3001):15-6.
  78. Pruzanski W, Vadas P, Stefanski E, Urowitz M. Phospholipase A2 activity in sera and synovial fluids in rheumatoid arthritis and osteoarthritis. Its possible role as a proinflammatory enzyme. J Rheumatol 1985;12(2):211-6.
  79. Boilard E, Lai Y, Larabee K, Balestrieri B, Ghomashchi F, Fujioka D, et al. A novel anti‐inflammatory role for secretory phospholipase A2 in immune complex‐mediated arthritis. EMBO Mol Med 2010;2(5):172-87.
  80. Bomalaski JS, Clark MA. Phospholipase A2 and arthritis. Arthritis Rheum 1993;36(2):190-8.
  81. Masuda S, Murakami M, Komiyama K, Ishihara M, Ishikawa Y, Ishii T, et al. Various secretory phospholipase A2 enzymes are expressed in rheumatoid arthritis and augment prostaglandin production in cultured synovial cells. FEBS J 2005;272(3):655-72.
  82. Bomalaski JS, Fallon M, Turner RA, Crooke ST, Meunier PC, Clark MA. Identification and isolation of a phospholipase A2 activating protein in human rheumatoid arthritis synovial fluid: induction of eicosanoid synthesis and an inflammatory response in joints injected in vivo. J Lab Clin Med 1990;116(6):814-25.
  83. Ginsburg I, Ward PA, Varani J. Lysophosphatides enhance superoxide responses of stimulated human neutrophils. Inflammation 1989;13(2):163-74.
  84. Li P, Zheng Y, Chen X. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol 2017;8:460.
  85. Ginsburg I. Multi-drug strategies are necessary to inhibit the synergistic mechanism causing tissue damage and organ failure in post infectious sequelae. Inflammopharmacology 1999;7(3):207-17.
  86. Finkelstein AE, Ladizesky M, Borinsky R, Kohn E, Ginsburg I. Antiarthritic synergism of combined oral and parenteral chrysotherapy. Inflammation 1988;12(4):373-82.