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ABSTRACT
The autoimmune disorder rheumatoid arthritis (RA) is a relapsing and chronic inflammatory disease 
that affects the synovial cells, cartilage, bone, and muscle. It is characterised by the accumulation 
of huge numbers of polymorphonuclear neutrophils (PMNs) and macrophages in the synovia. 
Auto-antibodies are deposited in the joint via the activity of highly cationic histones released from 
neutrophil extracellular traps (NETs) in a phenomenon termed NETosis. The cationic histones function 
as opsonic agents that bind to negatively charged domains in autoantibodies and complement 
compounds via strong electrostatic forces, facilitating their deposition and endocytosis by synovial 
cells. However, eventually the main cause of tissue damage is the plethora of toxic pro-inflammatory 
substances released by activated neutrophils recruited by cytokines. Tissue damage in RA can also 
be accompanied by infections which, upon bacteriolysis, release cell-wall components that are toxic 
to tissues. Some amelioration of the damaged cells and tissues in RA may be achieved by the use of 
highly anionic heparins, which can neutralize cationic histone activity, provided that these polyanions 
are co-administrated with anti-inflammatory drugs such as steroids, colchicine, or methotrexate, low 
molecular weight antioxidants, proteinase inhibitors, and phospholipase A2 inhibitors. 
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SHORT REVIEW

INTRODUCTION 
Rheumatoid arthritis (RA) is a severe autoimmune dis-
order that occurs in about 0.5-1% of the population. It 

may lead to severe synovi-
al, joint, cartilage and bone 
damage and dysfunction. 
Early diagnosis and treat-
ment of RA can substan-
tially slow the progression 
of joint damage in up to 
90% of patients. Rheuma-
toid arthritis can also show 

systemic manifestations, such as cardiovascular, pulmo-
nary, and skeletal disorders.1-5 However, the genetic en-
vironment that potentially leads to articular damage is still 
not fully understood.6 
The hallmark of RA is deposition in the joints of rheu-
matoid factors, immune complexes, complement com-
ponents7-10 and perivascular polymorphonuclear neutro-
phils (PMNs) and macrophage infiltration recruited via 
cytokines.11-16 These leukocytes become activated and 
can release a plethora of toxic pro-inflammatory agonists 
into the surroundings, which can synergistically attack 
and destroy synovial cells, cartilage and bone structures. 
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A NOVEL WORKING HYPOTHESIS IS PROPOSED 
TO EXPLAIN MECHANISMS GOVERNING RA 
PATHOGENICITY
The present communication argues that highly cationic 
histones and additional polycations are delivered by neu-
trophil extracellular traps (NETs) in a process termed NE-
Tosis.17-18 These polycations act like opsonins19 that bind, 
via strong electrostatic forces, to negatively charged do-
mains in immune complexes and in complement compo-
nents. This interaction facilitates their deposition, binding 
and internalization by synovial cells. 
This novel proposal is based mainly on previous obser-
vations from our laboratories. We have shown that if hae-
molytic streptococci, Candida albicans20 and even whole 
cell nuclei21 were pre-coated (opsonised) with the cation-
ic histone, they will not only bind to and be endocytosed 
by phagocytes such as neutrophils and macrophages, 
but also by endothelial cells, fibroblasts, and even syno-
vial cells.
However, the main toxic agents found in the joints that 
can eventually destroy synovial cells, cartilage and bone 
are most probably mediated by the toxic actions of the 
plethora of pro-inflammatory compounds released by 
activated neutrophils and macrophages. These include 
reactive oxygen and nitrogen species, cationic protein-
ases, and the membrane-damaging phospholipases 
and lysophosphatides,22–36 besides the toxic products 
released by dying cells.37 It is also of great interest to note 
that the mechanisms by which PMNs and macrophages 
destroy tissues are very similar to those mediated by 
group A haemolytic streptococci.38 

THE POSSIBLE ROLE PLAYED BY INFECTIONS IN 
RA PATHOGENICITY 
Microbial infections, which sometimes accompany RA, 
may also contribute to the pathogenicity of various auto-
immune disorders. This is because both pathogenic and 
non-pathogenic microorganisms can undergo bacterioly-
sis39 induced either by the action of cationic lysozyme,40 or 
following treatment with certain bacteriolytic antibiotics.39 
Bacteriolysis involves the release of the cell-membrane 
component lipoteichoic acid and cell-wall-derived pep-
tidoglycans38 derived from Gram-positive bacteria and 
lipopolysaccharide (LPS) from Gram-negative ones.38 
Several studies have also described the persistence of 
non-biodegradable streptococcal cell-wall components 
in macrophages causing chronic joint inflammation.41–45 
Moreover, during serious infections, treatment with an-
ti-tumour necrosis factor alpha (TNFα) may also accom-
pany RA.46 

ROLE OF REACTIVE OXYGEN SPECIES (ROS) IN 
RA PATHOGENICITY 
Cationic proteinases and oxidants generated by activat-
ed leukocytes via NADPH oxidase, may be key prod-

ucts in tissue destruction during inflammation, and, most 
probably, also in autoimmune disorders.47–58 Therefore, 
the clinical use of low-molecular-weight antioxidants such 
as ascorbate, N-acetyl cysteine, glutathione, catalase, 
and antioxidant extracts from cranberries, lemon, and 
pomegranate. might be important in the early phases of 
RA, especially if also combined with the anti-proteinase 
aprotinin, and inhibitors of phospholipase A2 (PLA2) and 
lysophosphatides such as lecithin (see below). 
 
THE ROLE OF REACTIVE NITROGEN SPECIES 
(RNS) IN RA PATHOGENICITY 
PMN activation in inflamed tissue can result in the gen-
eration of nitric oxide generated by inducible nitric ox-
ide synthase. The nitric oxide radical can then be trans-
formed into the highly toxic peroxynitrite which may act 
together with ROS to cause cell and tissue damage.59–62 

THE POSSIBLE ROLE OF PROTEINASES IN 
TISSUE DAMAGE IN RA 
ROS, RNS and proteinases are always found in the sy-
novial fluid of patients suffering from RA, and may be 
pathogenic, causing tissue degradation. A large series of 
investigations, mostly using tissue cultures, have demon-
strated the synergistic toxic effects of proteinases and 
ROS.19,21,22,24,25,29,30,33,63-65 In general, oxidized proteins are 
more susceptible to degradation by proteinase.65 

CAN THE HIGHLY ANIONIC HEPARIN AND 
HEPARINOIDS BE USED TO AMELIORATE TISSUE 
DAMAGE IN RA? 
To prevent the binding, deposition, and endocytosis of 
immune complexes and complement components in tis-
sues mediated by the action of cationic opsonins,19 one 
might consider the administration to RA patients of the 
highly negatively charged heparin and heparinoids.66–70 
These common drugs could neutralise the opsonic ac-
tivity of the polycationic histone, thereby preventing the 
deposition of immune complexes and complement com-
ponents in tissues. Heparinoids69 have also been found 
to prevent the binding of immune complexes containing 
nucleosomal antigens to the glomerular basement mem-
brane, thereby delaying the onset of autoimmune nephri-
tis, and heparin inhibits the proliferation of human RA sy-
noviocytes through the nuclear factor (NF)-κB pathway.70

ROLE OF BLOOD COAGULATION AND 
FIBRINOLYSIS IN RA PATHOGENICITY 
The severe injury to synovial cells in the joints of RA pa-
tients may lead to blood-vessel damage. The accumula-
tion of plasma and its coagulation and fibrinolytic com-
ponents may affect the pathological processes involved 
in tissue destruction in the synovial cells, cartilage, mus-
cle, and bone.71–76 Plasmin is a potent proteolytic enzyme 
that acts in concert with ROS, RNS, proteinases and 
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membrane-perforating phospholipases released from 
activated PMNs to cause cell damage.22,23 Fibrinolysis 
may also be affected by polycations such as poly-L-ly-
sine (a histone mimetic) and others.77

ROLE OF PHOSPHOLIPASES IN RA 
PATHOGENICITY 
PLA2 activity in the serum and synovial fluids in RA
PLA2 released by activated PMNs is found in the sera 
and synovial fluids of RA patients, with a positive cor-
relation between synovial fluid and matched sera.78–82 
Human neutrophils that were pre-treated with subtoxic 
concentrations of PLA2-derived lysophosphatides act-
ed synergistically with the neutrophil agonist phorbol 
myristate acetate (PMA), immune complexes, cationic 
poly-L-histidine, phytohemagglutinin, and N-formyl me-
thionine-leucyl-phenylalanine (f-MLP) to cause enhanced 
generation of superoxide (O2

-). The lysophosphatide 
compounds bind strongly to the neutrophils and could 
not be washed away. The lysophosphatides that collab-
orated with agonists to stimulate O2

- generation were 
also highly haemolytic towards human red blood cells. 
O2

- generation was also markedly enhanced when sub-
stimulatory amounts of arachidonic acid or eicosapen-
taenoic acid were added to PMNs in the presence of a 
variety of agonists.83 These data suggest that in addition 
to long-chain fatty acids, only those lysophosphatides 
compounds that possess fatty acids with more than 10 
carbons and that are also highly haemolytic, can cause 
enhanced generation of O2

- in stimulated PMNs.

ARE THERE ANY SPECIFIC CLINICAL DRUGS, 
OTHER THAN ANIONIC HEPARINS, WHICH CAN 
AMELIORATE TISSUE DAMAGE IN RA PATIENTS? 
Inhibition of cell damage in RA has been attempted clini-
cally using drugs such as the anti-inflammatories meth-
otrexate, colchicine, steroids, and cyclophosphamides, 
all known suppressors of the PMNs’ main functions of 
chemotaxis and phagocytosis. Other suggested and 
tested drugs include hydroxychloroquine (Plaquenil), 
leflunomide (Arava), sulfasalazine (Azulfidine), and mi-
nocycline (Minocin).84,85 Chrysotherapy has also been 
recommended.86 However, to date, no drug has been 
really shown to effectively suppress the severe damage 
seen in RA. The use of antibiotics in RA may have some 
value when a specific microorganism is identified, but 
only if bacteriolytic antibiotics are used.39 

CONCLUSIONS, AND WHERE DO WE GO FROM 
HERE?
The present communication offers a novel approach to 
describe the possible mechanisms underlying the joint 
destruction that is a hallmark of RA pathogenicity. RA 
is a synergistic multifactorial autoimmune disease involv-
ing an interplay among a multiplicity of proinflammatory 

agonists generated by activated neutrophils and mac-
rophages, reactive oxygen nitrogen species PLA2, lys-
ophosphatides, autoimmune complexes, complement 
components, and highly positively charged histones 
generated by PMN NETosis. Unfortunately, no specif-
ic agents or agent combinations have been identified 
whose significant inhibition might alter the deleterious 
toxic effects leading to joint destruction. 

SUMMARY
In summary, we have discussed several overlapping and 
successive steps in the development and progression of 
RA pathogenicity. These steps include: 
1. Recruitment of huge numbers of neutrophils (PMNs) 
and macrophages to the synovial area via cytokines. 
2. Release from PMN NETs (NETosis) of highly cationic 
toxic histones and formation of citrullinated histones. 
3. Histone may function as a potent opsonic agent.
4. Through strong electrostatic forces, opsonins can in-
teract with and bind to negatively charged domains on 
immune complexes and complement components, facil-
itating their binding, deposition, and possibly also inter-
nalisation, by synovial cells. 
5. Recruited PMNs and macrophages adhering to syno-
vial surfaces are activated and release a plethora of toxic 
proinflammatory agonists into the surrounding medium. 
These include cationic peptides, oxidants, proteinases, 
and membrane-perforating phospholipases, which can 
all act synergistically to destroy synovial cells, cartilage, 
and bone structures. Development of blood coagulation 
and fibrinolysis in the synovial fluid may be dealt with 
using anticoagulants and agents that inhibit fibrinolytic 
activity. 
6. Highly anionic heparin and heparinoids, which neu-
tralise polycations, may provide protection against tissue 
damage in RA, more so if combined with drugs such as 
steroids, methotrexate, and colchicine, all potent anti-in-
flammatory agents against the PMN and macrophage 
functions of chemotaxis and phagocytosis. Th1 cyto-
kines may also be inhibited by drugs that affect leukocyte 
recruitment. 
7. Non-bacteriolytic antibiotics may be used to treat in-
fections in RA patients. Bacteriolysis should be avoided, 
as it can release the potent toxic cell-wall components 
lipoteichoic acid, peptidoglycan, and endotoxin.  
8. Nonbiodegradable microbial cell-wall components 
that persist for long periods in macrophages in the joints 
may perpetuate chronic destructive arthritis. 
9. Toxic oxidants may be controlled clinically by the 
low-molecular-weight anti-oxidants glutathione, ascor-
bate, and N-acetyl cysteine, and by certain plant poly-
phenols. 
10. Blood coagulation and fibrinolysis may be dealt with 
using the anticoagulant heparin and proteinase inhibitors. 
11. The use of drug cocktails comprised of antioxidants, 
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proteinase inhibitors, PLA2 inhibitors, highly anionic 
heparin to inhibit one of the major agonists-histones, 
is recommended, if also combined with drugs such as 
steroids. Clinically, this might be a complicated task, 
necessitating the use of appropriate animal models and 
the permission to use such cocktails clinically, which can 
only be obtained following highly expensive clinical trials 
in humans. 
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